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How many red
objects are right of
the yellow cube?

Visual Question Answering involves
determining the correct answer for
a given question-image pair

Unlike existing methods, TbD-nets leverage attention masks that
are explicitly grounded in visual primitives.

How many large
rubber cubes are Iin
the image?

Large + Rubber + Cubes

Related Work

» Andreas et al. [1] introduced a method that combines a natural-language parser with
reusable neural “modules” to compose question-specific neural module networks (NMNSs)

- Early NMNis [1, 3] produced interpretable outputs using visual attention masks, but
struggled to achieve good performance

* By improving the natural-language parser and developing modules that process high-
dimensional features rather than attentions, Johnson et al. [5] significantly improved
performance at the cost of interpretability
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Transparency by Design Networks

» Transparency by Design networks (TbD-nets) are built to achieve the performance of black-box
models while surpassing the interpretability of initial NMNs by specializing each module type
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 Our approach reuses the program generator from [5] and focuses on improving the visual
reasoning component to yield highly performant and interpretable modules

* The visual reasoning component is comprised of modules which operate on and produce
visual attentions

- Each module is designed to perform spatial transformations on visual attention to suit its
specific task

TbD Visual Reasoning Component

How many small objects
are left of the small
rubber cylinder and right
of the blue cylinder?
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Results on Main Task

Model Overall
 We evaluate our model on the CLEVR dataset [4], a HE”NWB] ;g;
visual reasoning benchmark comprised of synthetic Human [4] 92.6
o PG + EE (700k) [5] 960.9
scenes containing 3D shapes CNN + GRU + FiLM [6] 07
: 0 MAC [2] 98.9

* We achieve state-of-the-art 99.1% accuracy on s
: -net (Ours) 98.7
CLEVR with 0=0.07 TbD + reqgularization 98.5
TbD + regularization + resolution 990.1

+ Resolution

Original + Regularization

Quantifying Interpretability

Original +Regularization +Resolution

Correct-object recall 0.86 0.92 0.99
Correct-object precision 0.41 0.90 0.98

» Adding regularization and increasing the spatial resolution reduces the noise in and improves
localization of the attentions

» Specifically, we measure the center-of-mass overlap of the attentions with the ground-
truth regions

Results on Generalization Task

Train A Fine-tune B

A B A B
PG + EE [5] 96.0 /3.7 76.1 92.7
TbD + reg (Ours) 08.8 75.4 96.9 906.3

* The Compositional Generalization Test (CoGenT) evaluates generalizability to new color/
shape combinations

- While our model learns entangled representations of color and shape (Train A), we quickly
recover performance fine-tuning on a small amount of data (Fine-tune B)

Quantifying Entanglement
Predict Shape Predict Color
P(v|A) P(v|B)  P(v|A) P(v|B)

Train A 0.90 0.22 0.91 0.84
Fine-tune B 0.77 0.81 0.90 0.86

- We find that our model’s representation of shape is entangled with color (Predict Shape A),
but its color representation is not entangled with shape (Predict Color A)

* Fine-tuning on a small amount of data rectifies the entanglement (Fine-tune B)

O Code available at github.com/davidmascharka/tbd-nets
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